Abstract

The superficial epithelial layer in the urinary bladder of adult rats was examined, in various states, using the transmission and scanning electron microscopes. A good agreement was obtained between the results of the two methods. When the urinary bladder is unexpanded, the superficial cells show marked bulges into the bladder lumen and the contacts between cells (mainly desmosomes) are displaced deep into the epithelium. The luminal surface is bizarrely bent and large parts of the membrane intrude into the cytoplasm, where they give the appearance of discoid and fusiform vesicles. Between neighboring cells, deep interdigitations are observed. In the scanning electron microscope, the surface of the epithelium appears cauliflower-like and has deep grooves, gullys and folds. When the bladder is expanded, the surface becomes smoother and the contacts between cells move to the surface. The stretched cells are angular in form (5-, 6- or 7-sided) and show great variations in surface area (150-500 mum2). The luminal cell membrane consists of an alternation of asymmetrical areas (120 A thick and 0.2-0.4 mum in length) with normal sections which are 80 A thick. In the scanning electron microscope, these thick areas appear as 4-, 5- or 6-sided plaques with a maximal diameter of 0.4 mum. The borders of the plaques are formed of portions of cell membrane which have a normal thickness and extrude as microcristae into the lumen. This produces a honeycomb appearance on the cell surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.