Abstract
Humans express five distinct myosin isoforms in the sarcomeres of adult striated muscle (fast IIa, IId, the slow/cardiac isoform I/β, the cardiac specific isoform α, and the specialized extraocular muscle isoform). An additional isoform, IIb, is present in the genome but is not normally expressed in healthy human muscles. Muscle fibers expressing each isoform have distinct characteristics including shortening velocity. Defining the properties of the isoforms in detail has been limited by the availability of pure samples of the individual proteins. Here we study purified recombinant human myosin motor domains expressed in mouse C2C12 muscle cells. The results of kinetic analysis show that among the closely related adult skeletal isoforms, the affinity of ADP for actin·myosin (K(AD)) is the characteristic that most readily distinguishes the isoforms. The three fast muscle myosins have K(AD) values of 118, 80, and 55 μM for IId, IIa, and IIb, respectively, which follows the speed in motility assays from fastest to slowest. Extraocular muscle is unusually fast with a far weaker K(AD) = 352 μM. Sequence comparisons and homology modeling of the structures identify a few key areas of sequence that may define the differences between the isoforms, including a region of the upper 50-kDa domain important in signaling between the nucleotide pocket and the actin-binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.