Abstract
Under the high current density, the excessive strong adsorption of H* intermediates and H2 accumulation the catalysts are the major obstacle to the industrial application of hydrogen evolation reaction (HER) catalysts. Herein, through experimental exploration, it is found that the superaerophobic Nitrogen (N)-doped carbon material can promote the rapid release of H2 and provide H* desorption site for the hydrogen spillover process, which makes it have great potential as the catalysts support for hydrogen spillover. Based on this discovery, this work develops the hydrogen spillover catalyst with electron-rich Pt sites loaded on N-doped carbon nanocage (N-CNC) with adjustable work function. Through a series of comprehensive electrochemical tests, the existence of hydrogen spillover effort has been proved. Moreover, the in situ tests showed that pyrrolic-N can activate adjacent carbon sites as the desorption sites for hydrogen spillover. The Pt@N-1-CNC with the minimum work function difference (ΔΦ) between Pt NPs and support shows superior hydrogen evolution performance, only needs overpotential of 12.2mV to reach current density of 10mA cm-2 , outstanding turnover frequency (TOF) (44.7 s-1 @100mV) and superior durability under the 360h durability tests at current density of 50mA cm-2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.