Abstract

We express the position of the Sun in the sky as a function of time and the observer’s geographic coordinates. Our method is based on applying rotation matrices to vectors describing points on the celestial sphere. We also derive direct expressions, as functions of date of the year and geographic latitude, for the duration of daylight, the maximum and minimum altitudes of the Sun, and the cardinal directions to sunrise and sunset. We discuss how to account for the eccentricity of the Earth’s orbit, the precessions of the equinoxes and the perihelion, the size of the solar disc and atmospheric refraction. We illustrate these results by computing the dates of ‘Manhattanhenge’ (when sunset aligns with the east–west streets on the main traffic grid for Manhattan, in New York City), by plotting the altitude of the Sun over representative cities as a function of time, and by showing plots (‘analemmas’) for the position of the Sun in the sky at a given hour of the day.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.