Abstract

Adult male and female northern fur seals (Callorhinus ursinus) are sexually segregated in different regions of the North Pacific Ocean and Bering Sea during their winter migration. Explanations for this involve interplay between physiology, predator-prey dynamics, and ecosystem characteristics, however possible mechanisms lack empirical support. To investigate factors influencing the winter ecology of both sexes, we deployed five satellite-linked conductivity, temperature, and depth data loggers on adult males, and six satellite-linked depth data loggers and four satellite transmitters on adult females from St. Paul Island (Bering Sea, Alaska, USA) in October 2009. Males and females migrated to different regions of the North Pacific Ocean: males wintered in the Bering Sea and northern North Pacific Ocean, while females migrated to the Gulf of Alaska and California Current. Horizontal and vertical movement behaviors of both sexes were influenced by wind speed, season, light (sun and moon), and the ecosystem they occupied, although the expression of the behaviors differed between sexes. Male dive depths were aligned with the depth of the mixed layer during daylight periods and we suspect this was the case for females upon their arrival to the California Current. We suggest that females, because of their smaller size and physiological limitations, must avoid severe winters typical of the northern North Pacific Ocean and Bering Sea and migrate long distances to areas of more benign environmental conditions and where prey is shallower and more accessible. In contrast, males can better tolerate often extreme winter ocean conditions and exploit prey at depth because of their greater size and physiological capabilities. We believe these contrasting winter behaviors 1) are a consequence of evolutionary selection for large size in males, important to the acquisition and defense of territories against rivals during the breeding season, and 2) ease environmental/physiological constraints imposed on smaller females.

Highlights

  • Body size commonly affects animal behavior and, in many pinniped species, sexual dimorphism results in habitat segregation and reduced intraspecific competition for resources [1,2,3,4]

  • We estimated that 45–52% of the adult female migration was recorded for half of the females tagged (Fig. 2); the longest migratory tracking period was 139 d (Table 1)

  • Three of the five male satellite-relayed data loggers (SRDLs) tags transmitted into the spring months, recording an estimated 76–95% of the total migratory period, with the longest tracking duration lasting 195 d

Read more

Summary

Introduction

Body size commonly affects animal behavior and, in many pinniped species, sexual dimorphism results in habitat segregation and reduced intraspecific competition for resources [1,2,3,4]. These characteristics are explained by their foraging behavior along migration routes–adult male northern elephant seals migrate to and along the continental margins of western North America and undertake benthic dives to similar depths as females foraging farther offshore, which, in contrast, access the deep scattering layer while in pelagic waters [23,25] For both fur seals and elephant seals, larger size allows for longer, and in some cases, deeper dives; the interplay between predator, prey, and habitat varies and, as noted by Staniland and Robinson [2], the manner in which their behavior is expressed (i.e., dive durations, depths, and foraging routes) is dependent on the local environment and its effect on prey resources

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call