Abstract

Abstract Next-generation experiments allow for the possibility of testing the neutrino flavor oscillation model to very high levels of accuracy. Here, we explore the possibility that the dark matter in the current universe is made of two particles, a sterile neutrino and a very light dark matter particle. By using a 3+1 neutrino flavor oscillation model, we study how such a type of dark matter imprints the solar neutrino fluxes, spectra, and survival probabilities of electron neutrinos. The current solar neutrino measurements allow us to define an upper limit for the ratio of the mass of a light dark matter particle m ϕ and the Fermi constant G ϕ , such that G ϕ /m ϕ must be smaller than 1030 G F eV−1 to be in agreement with current solar neutrino data from the Borexino, Sudbury Neutrino Observatory, and Super-Kamiokande detectors. Moreover, for models with a very small Fermi constant, the amplitude of the time variability must be lower than 3% to be consistent with current solar neutrino data. We also found that solar neutrino detectors like Darwin, able to measure neutrino fluxes in the low-energy range with high accuracy, will provide additional constraints to this class of models that complement the ones obtained from the current solar neutrino detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.