Abstract

SUMOylation is an essential protein modification process that regulates numerous crucial cellular and biochemical processes in phytopathogenic fungi, and thus plays important roles in multiple biological functions. The present study characterizes the SUMOylation pathway components, including SMT3 (SUMO), AOS1 (an E1 enzyme), UBC9 (an E2 enzyme), and MMS21 (an E3 ligase), in Fusarium oxysporum f. sp. niveum (Fon), the causative agent of watermelon Fusarium wilt, in terms of the phylogenetic relationship, gene/protein structures, and basic biological functions. The SUMOylation components FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are predominantly located in the nucleus. FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are highly expressed in the germinating macroconidia, but their expression is downregulated gradually in infected watermelon roots with the disease progression. The disruption of FonUBA2 and FonSIZ1 seems to be lethal in Fon. The deletion mutant strains for FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are viable, but exhibit significant defects in vegetative growth, asexual reproduction, conidial morphology, spore germination, responses to metal ions and DNA-damaging agents, and apoptosis. The disruption of FonSMT3, FonAOS1, FonUBC9, and FonMMS21 enhances sensitivity to cell wall-perturbing agents, but confers tolerance to digestion by cell wall-degrading enzymes. Furthermore, the disruption of FonSMT3, FonAOS1, and FonUBC9 negatively regulates autophagy in Fon. Overall, these results demonstrate that the SUMOylation pathway plays vital roles in regulating multiple basic biological processes in Fon, and, thus, can serve as a potential target for developing a disease management approach to control Fusarium wilt in watermelon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call