Abstract

During the ice-free summer season in 1995 the authors deployed and subsequently tracked 39 surface drifters to test the hypothesis that the discharge from the Kolyma River forces a buoyancy-driven coastal current from the East Siberian Sea toward Bering Strait. The observed mean flow is statistically significant at the 95% level of confidence, but its direction contradicts their initial hypothesis. Instead of a coastally trapped eastward flow, the authors find a laterally sheared westward flow with maximum velocities offshore that correlate only weakly with the local winds. At a daily, wind-dominated timescale the drifter data reveal spatially coherent flows of up to 0.5 m s21. The Lagrangian autocorrelation scale is about 3 days and the Lagrangian eddy length scale reaches 40 km. This spatial scale exceeds the nearshore internal deformation radius by a factor of 3; however, it more closely corresponds to the internal deformation radius associated with the offshore ice edge. Bulk estimates of the horizontal mixing coefficient resemble typical values of isotropic open ocean dispersion at midlatitudes. Hydrographic observations and oxygen isotope ratios of seawater indicate a low proportion of riverine freshwater relative to sea ice melt in most areas of the East Siberian Sea except close to the Kolyma Delta. The observations require a reevaluation of the conceptual view of the summer surface circulation of the East Siberian Sea. Eastward buoyancy-driven coastal currents do not always form on this shelf despite large river discharge. Instead, ice melt waters of a retreating ice edge act as a line source of buoyancy that in 1995 forced a westward surface flow in the East Siberian Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call