Abstract

Abstract It has been well known that the preceding winter ENSO affects the atmospheric convection over the tropical western North Pacific (WNP) in summer, which has important impacts on Asian climate. However, more than half of the interannual variance in tropical WNP convection cannot be explained by ENSO. This study separates the WNP convection into two components, namely, independent of and dependent on the preceding winter ENSO, and compares the anomalies associated with these two components. The linear regression results indicate that the independent convection suppression corresponds to significant cyclonic anomalies over East Asia in both the lower and upper troposphere, and correspondingly a southward displacement of upper-tropospheric East Asian westerly jet. By contrast, these circulation anomalies are weakened for the dependent convection suppression, which is more closely related to the lower-tropospheric cyclonic anomalies over the Indian Ocean. Accordingly, the independent and dependent components exert distinct impacts on rainfall and temperature in Asia. Specifically, the independent suppression corresponds to more significantly enhanced rainfall in subtropical East Asia compared with the dependent one. Moreover, there are colder surface air temperatures in the midlatitude East Asia for the independent suppression and warmer temperatures in South and Southeast Asia for the dependent suppression. Further analyses suggest that the circulation and climate anomalies for the independent component are mainly contributed by July and August, while those for the dependent component become weak from June to August. These results can be helpful for a better understanding of summer Asian climate variability and predictability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call