Abstract

The relatively large number of Culicoides midges (Diptera: Ceratopogonidae) that can be collected with a light trap makes it the most widely used tool for this purpose. However, the majority of these traps were originally designed for collecting mosquitoes. The evaluation and improvement of traps to increase their effectiveness in collecting Culicoides midges will unavoidably form part of research on these insects. In the present study the efficiency of the Triple trap for collecting livestock-associated Culicoides midges was compared with that of the Onderstepoort 220 V, the BG-sentinel and the mini-CDC traps. A unique feature of the Triple trap is that selected surfaces are coated with TiO2 (titanium dioxide) which, in the presence of ultra violet light, acts as a photo-catalyser to produce CO2, which in turn may attract blood-feeding insects. Overall, the Onderstepoort trap collected significantly higher numbers of midges than the others. Relative efficiency varied between different occasions and under some conditions, for example periods with low midge abundance during the winter, the mean numbers collected with the Triple trap did not differ significantly from those of the Onderstepoort or BG-sentinel traps. By replacing the collection chamber of the Triple trap with a sock and beaker, similar to that of the Onderstepoort trap, it can effectively be used for the collection of Culicoides midges.

Highlights

  • The effective qualitative and quantitative detection of all potential vectors of African horse sickness, bluetongue and other viruses transmitted by Culicoides midges is essential for risk analysis and implementation of integrated control measures

  • Taking into account the substantial day to day variation, the mean number collected with the Triple trap (386.7) did not differ significantly from that of the Onderstepoort (483.8) or BG-sentinel traps (186.9) (Table 1)

  • Whilst the Onderstepoort (Venter et al 2009), mini-CDC (De Deken et al 2008; Miranda, Ricón & Borràs 2004; Mullens & Schmidtmann 1982) and BG-sentinel (Kiel et al 2009) traps are routinely used for the collection of Culicoides midges, this is the first time that the Triple trap has been evaluated for this purpose

Read more

Summary

Introduction

The effective qualitative and quantitative detection of all potential vectors of African horse sickness, bluetongue and other viruses transmitted by Culicoides midges is essential for risk analysis and implementation of integrated control measures. The finding that these viruses can be transmitted by several species in the genus Culicoides (Diptera: Ceratopogonidae) (Carpenter, Wilson & Mellor 2009; Mellor, Boorman & Baylis 2000; Mellor, Carpenter & White 2009) and that they are linked to the near-cosmopolitan distribution of bluetongue virus emphasises the need for comprehensive and comparable data on the presence of these vectors. The evaluation and improvement of the efficacy of light traps to collect potential vectors of livestock pathogens will be important in Culicoides research

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.