Abstract

We present a procedure to calculate the Sudakov radiator for a generic recursive infrared and collinear (rIRC) safe observable whose distribution is characterised by two widely separated momentum scales. We give closed formulae for the radiator at next-to-next-to-leading-logarithmic (NNLL) accuracy, which completes the general NNLL resummation for this class of observables in the ARES method for processes with two emitters at the Born level. As a byproduct, we define a physical coupling in the soft limit, and we provide an explicit expression for its relation to the overline{mathrm{MS}} coupling up to mathcal{O}left({alpha}_s^3right) . This physical coupling constitutes one of the ingredients for a NNLL accurate parton shower algorithm. As an application we obtain analytic NNLL results, of which several are new, for all angularities τx defined with respect to both the thrust axis and the winner-take-all axis, and for the moments of energy-energy correlation FCx in e+e− annihilation. For the latter observables we find that, for some values of x, an accurate prediction of the peak of the differential distribution requires a simultaneous resummation of the logarithmic terms originating from the two-jet limit and at the Sudakov shoulder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.