Abstract
We characterised the among species variability in leaf gas exchange and morphological traits under controlled conditions of seedlings of 22 tropical rainforest canopy species to understand the origin of the variability in leaf carbon isotope discrimination (Δ) among species with different growth and dynamic characteristics (successional gradient). Our results first suggest that these species pursue a consistent strategy in terms of Δ throughout their ontogeny (juveniles grown here versus canopy adult trees from the natural forest). Second, leaf Δ was negatively correlated with WUE and N, and positively correlated with gs, but among species differences in Δ were mainly explained by differences in WUE. Finally, species belonging to different successional groups display distinct leaf functional and morphological traits. We confirmed that fast growing early successional species maximise carbon assimilation with high stomatal conductance. In contrast, fast and slow growing late successional species are both characterised by low carbon assimilation values, but by distinct stomatal conductance and leaf morphological features. Along the successional gradient, these differences result in much lower Δ for the intermediate species (i.e. fast growing late successional) as compared to the two other groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.