Abstract
<p>Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium <em>Cylindrospermopsis raciborskii</em> are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of <em>C. raciborskii</em> in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using <em>C. raciborskii</em> cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (&gt;40% to the total biovolume) of <em>C. raciborskii</em> between climate regions. <em>C. raciborskii</em> was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio &lt;0.5 to &gt;1.5). Moreover, <em>C. raciborskii </em>was capable of dominating the phytoplankton at low temperatures (&lt;15°C). Our experimental results showed that <em>C. raciborskii</em> growing in interaction was enhanced by the increase of the temperature and light intensity. <em>C. raciborskii </em>growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in temperature. Predictive models that consider only temperature as a drive factor can therefore fail in predicting the expansion of this potentially toxic cyanobacterium.<em></em></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.