Abstract

The proton/hydrogen redox couple underpins the electrochemical sciences; however, the nonunity stoichiometry of the reaction leads to distinct voltammetric complications. This Article provides a joint analytical, numerical, and experimental investigation into the reversible hydrogen evolution reaction at a platinum microelectrode. Literature obscurities and nuances are highlighted and corrected, allowing the presentation of an holistic overview of the electrochemical reaction at the reversible limit. Under such conditions, it is demonstrated, first, how the reaction may be misinterpreted as being irreversible and, second, that the transfer coefficient for the reversible (Nernstian) hydrogen evolution reaction is equal to 2. Importantly, the use of the reversible hydrogen electrode (RHE) as a reference potential in voltammetric experiments is critically evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.