Abstract

Molecular structural modifications are utilized to improve the short-circuit current (JSC ) of high-voltage organic photovoltaics (OPVs). Herein, the classic non-fullerene acceptor (NFA), BTA3, is chosen as a benchmark, with BTA3b containing the linear alkyl chains on the middle core and JC14 fusing thiophene on the benzotriazole (BTA) unit as a contrast. The photovoltaic devices based on J52-F: BTA3b and J52-F: JC14 achieve wider external quantum efficiency responses with band edges of 730 and 800nm, respectively than that of the device based on J52-F: BTA3 (715 nm). The correspondingJSC increases to 14.08 and 15.78mA cm-2 , respectively, compared to BTA3 (11.56mA cm-2 ). The smaller Urbach energy and higher electroluminescence efficiency guarantee J52-F: JC14 a decreased energy loss (0.528eV) and a high open-circuit voltage (VOC ) of 1.07V. Finally, J52-F: JC14 combination achieves an increased power conversion efficiency (PCE) of 10.33% than that of J52-F: BTA3b (PCE = 9.81%) and J52-F: BTA3 (PCE = 9.04%). Overall, the research results indicate that subtle structure modification of NFAs, especially introducing fused rings, is a simple and effective strategy to extend the photoelectric response, boosting theJSC and ensuring a high VOC beyond 1.0V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.