Abstract

To test a new tool for the neurophysiological identification of the human subthalamic nucleus (STN) during stereotactic surgery for the implantation of deep-brain-stimulation (DBS) electrodes, we analysed off-line the intraoperative signals recorded from patients with Parkinson's disease. We estimated the power spectral density (PSD) along each penetration track (8 patients, 13 sides) and determined the spatial correlation of the PSD with the target location estimated from neuroimaging procedures ("anatomical target"), and with the final target location derived from standard intraoperative neurophysiological procedures for STN localization ("clinical target"). At each step we recorded the 'on-line' signal for 120 seconds; because the PSD was estimated by calculating the periodogram for 6-second epochs of neural signal, we had 20 epochs at each step. When the electrode track crossed the STN, the PSD in the 0.25-2.5 kHz band increased, peaking on average <0.5 mm cranial to the clinical target and 1.00+/-1.51 mm caudal to the anatomical target. When the track was outside the nucleus, the PSD remained unchanged. Even on recordings with low signal-to-noise ratio, off-line PSD analysis of neural signals showed a good correspondence with the target indicated by the surgical team. On-line intraoperative estimation of the PSD may be a simple, reliable, rapid and complementary approach to electrophysiological monitoring during STN surgery for Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.