Abstract

SummaryA LuxI/R‐like quorum sensing (QS) system (AfeI/R) has been reported in the acidophilic and chemoautotrophic Acidithiobacillus spp. However, the function of AfeI/R remains unclear because of the difficulties in the genetic manipulation of these bacteria. Here, we constructed different afeI mutants of the sulfur‐ and iron‐oxidizer A. ferrooxidans, identified the N‐acyl homoserine lactones (acyl‐HSLs) synthesized by AfeI, and determined the regulatory effects of AfeI/R on genes expression, extracellular polymeric substance synthesis, energy metabolism, cell growth and population density of A. ferrooxidans in different energy substrates. Acyl‐HSLs‐mediated distinct regulation strategies were employed to influence bacterial metabolism and cell growth of A. ferrooxidans cultivated in either sulfur or ferrous iron. Based on these findings, an energy‐substrate‐dependent regulation mode of AfeI/R in A. ferrooxidans was illuminated that AfeI/R could produce different types of acyl‐HSLs and employ specific acyl‐HSLs to regulate specific genes in response to different energy substrates. The discovery of the AfeI/R‐mediated substrate‐dependent regulatory mode expands our knowledge on the function of QS system in the chemoautotrophic sulfur‐ and ferrous iron‐oxidizing bacteria, and provides new insights in understanding energy metabolism modulation, population control, bacteria‐driven bioleaching process, and the coevolution between the acidophiles and their acidic habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.