Abstract

The substitution mechanism of two N₂ ligands in (CNC)Fe-2N₂ replaced by CO was studied theoretically at the B3LYP/LACVP* level. Both SN1 and SN₂ mechanisms were considered. The calculated results for the gas phase suggested that: 1) in SN1 mechanism, N₂ elimination, which involves S₀-T₁ PESs crossing, is the rate control step for both substitution stages. The barrier heights are 9.7 kcal mol(-1) and 13.05 kcal mol(-1), respectively. 2) In SN2 mechanism, the calculated barrier heights on LS PES are respectively 13.7 and 19.83 kcal mol(-1) for the two substitution steps, but S₀-T₁ PESs crossing lowers the two barriers to 10.7 and 15.7 kcal mol(-1), respectively. 3) Inclusion of solvation effect of THF by PCM model, the relative energies of all the key species (including minima, transition states and S₀-T₁ crossing points) do not have great difference from their gas phase relative energies. Considering that for each substitution step, SN1 barrier heights is slightly smaller than SN2 barrier, SN1 mechanism seems to be slightly preferable to SN2 mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call