Abstract

Black and irregularly shaped crystals of the bismuth‐rich bromide Bi5Br4 were obtained as a by‐product of the reaction of CsBr, Bi, and BiBr3. X‐ray diffraction on a single‐crystal revealed its orthorhombic structure with the space group Pmmn (no. 59) and lattice parameters a = 1800.0(2) pm, b = 1476.1(1) pm, and c = 924.5(2) pm at 296 K. The structure is composed of Bi82+ and Bi95+ polycations and bromidobismuthate(III) anions according to the structured formula Bi5Br4 = Bi20Br16 = Bi82+Bi95+[BiBr5]2–[Bi2Br11]5–. Bi5Br4 is the bismuth‐richest among the bismuth subhalides containing isolated polycations. Extensive differential scanning calorimetry studies indicate that Bi5Br4 decomposes at 262 °C, i.e. one degree below the bismuth‐rich eutectic at 263 °C. All attempts towards a rational synthesis yielded predominantly the neighboring phases BiBr and Bi6Br7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.