Abstract

The dynamical description of a semi quantum nonlinear systems whose classical limit is not chaotic is still an open question. These systems are characterized by mixing a classical system with a quantum-mechanical one. As some of them lead to an irregular dynamics, the name "semi quantum chaos" arises. In this contribution we study two different Hamiltonians through the Maximum Entropy Principle Approach (MEP). Taking advantage of the MEP formalism, it can be clearly established that the Hamiltonians belonging to the SU(2) Lie algebra have common properties and a common treatment can be developed for them. These Hamiltonians resemble a quantum spin system coupled to a classical cavity. In the present contribution, we show that all of them share the generalized uncertainty principle as an invariant of the motion and other invariants as well. Two different classical potentials V(q) have been studied. Their specific heat are evaluated in terms of the extensive (mean values) and the intensive (Lagrange multipliers) variables. The main result of the present contribution is to show that the specific heat of these systems can be fixed independently of the temperature by setting only the initial conditions on the extensive or intensive variables, as well as the value of the quantum-classical coupling parameter. It could be possible to infer that this result can be extended to generalized forms for the V(q) classical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.