Abstract

Exposure to the industrial solvent, styrene, induces locomotor and cognitive dysfunction in rats, and parkinsonian-like manifestations in man. The antipsychotic, haloperidol (HP), well known to induce striatal toxicity in man and animals, and styrene share a common metabolic pathway yielding p-fluoro phenylglyoxylic acid and phenylglyoxylic acid (PGA), respectively. Using an exposure period of 30 days and the vacous chewing movement (VCM) model as an expression of striatal-motor toxicity, we found that incremental PGA dosing (220–400 mg/kg) significantly increased VCMs up to day 25, but decreased to control levels shortly after reaching maximum dose. However, a diminishing dose of PGA (400–200 mg/kg) did not evoke an immediate worsening of VCMs but precipitated a significant increase in VCMs following dosage reduction to 200 mg/kg on day 22. PGA exposure, therefore, compromises striatal-motor function that is especially sensitive to changes in exposure dose. Longer alternating dose exposure studies are needed to establish whether motor dysfunction is progressive in severity or longevity. These findings are of significance for the environmental toxicology of styrene in the chemical industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.