Abstract

This paper presents a study of the transient performance of the speed and position sensorless control of an interior permanent magnet synchronous motor (IPMSM) based on back-electromotive force (back-EMF) estimation method in the rotor reference frame. The fundamental characteristics of the estimated back-EMF, position and speed components using mathematical models of the IPMSM are analyzed. The analyzed sensorless control has back-EMF estimator, rotor position estimator such as a phase-lock-loop (PLL) type estimator, and disturbance observer. To improve the transient stability, the selection methods of major factors such as for sensorless control algorithm and the angle compensation method using a current feedback control are introduced. The dynamic performance of the proposed strategy in transient state is verified through simulation and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call