Abstract

The stable spectrum can be obtained when the voltage changes, which is a necessary condition for the white organic light emitting diode (WOLED) device to be widely used in the field of solid-state lighting. However, with the increase of voltage, the movement of the recombination zone (RZ) is inevitable because the perfect bipolar host material is difficult to obtain, which will redistribute the energy in the light emitting layer (EML) and affect the stability of the spectrum. We fabricate a series of ternary hybrid WOLEDs with a simple structure by inserting ultra-thin PO-T2T into the blue exciplex (TCTA:TPBi) to form the green interface exciplex. Without considering the movement of RZ, device B2 realizes the dynamic balance energy distribution in EML and stable spectrum by controlling two processes of the Dexter energy transfer and exciton capture. By modifying the doping ratio of the host material, we also find that the broadened RZ is helpful to further improve the spectral stability of the device. When the voltage changes from 3 V to 7 V, the change range of color coordinates is only (0.026, 0.025).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call