Abstract
Due to global warming and the disturbance of the interannual variability of precipitation, the frequency of extreme drought events has increased. The impact of global climate change on water resources is becoming increasingly apparent, then it is particularly necessary to explore the carrying capacity of water ecological environment under extreme drought conditions, which can guarantee the ecological water security in river basins. This study takes the Guanzhong area of the Wei River Basin as an example, calculating the water environment carrying capacity of 40 areas in the Weihe Guanzhong area in different levels of years under extreme drought conditions by comprehensive evaluation model of carrying capacity and using geographic information system GIS to display the spatial distribution of water environment carrying capacity in 40 regions. According to the results of the spatial distribution of water environmental bearing capacity, four different schemes are designed to improve the bearing capacity. The first plan reduces the industrial water consumption and irrigation quota by 5%, the second plan increases the industrial water and sewage treatment rate on this basis. the third plan further improves the development and utilization rate of surface and groundwater, and the fourth plan, on the basis of the first three plans, supplies 600 million cubic meters of industrial and agricultural water to Guanzhong region. Through comparative analysis, without taking any measures, under the extreme drought conditions, the water environment carrying capacity of the 40 areas in Guanzhong is all in an unbearable state. Overall, plan 4 has the most significant improvement in the water environment-carrying capacity, especially the Dong zhuang Reservoir of the Jing River which has played a very important role in enhancing the water ecological environment carrying capacity of the downstream water of the Wei River.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.