Abstract

In recent years, sulfurized eucommia ulmoides gum (SEUG) has been used and developed in many fields due to its good properties. The cross-linking degree is crucial to the performance of SEUG. In order to explore the effect of the cross-linking degree on SEUG in depth, this paper combines macroscopic and microscopic techniques, and molecular discrete system models of EUG and SEUG with different cross-linking degrees are calculated by molecular dynamics simulation, and the density and solubility parameters of EUG, glass transition temperature, radial distribution function and mechanical property parameters of SEUG are derived. The results show that (1) the suitable minimum degree of polymerization of EUG is N = 30; (2) the degree of cross-linking has a significant effect on the intramolecular radial distribution of SEUG, but it has a small effect on the intermolecular radial distribution of SEUG; (3) the degree of cross-linking of SEUG should be controlled to be between 40% and 80% because the mechanical properties of SEUG, namely the bulk modulus, shear modulus, elastic modulus, Poisson’s ratio, Corsi pressure, are the best ones. Therefore, the conclusions of this study provide a theoretical basis for engineering practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.