Abstract
As a new kind of Halon replacement, 2-bromo-3,3,3-trifluoropropene (BTP) is highly effective at fire suppression with an extinguishment concentration lower than that of Halon 1301. Although the physical properties and extinguishing characteristics of BTP have been widely reported, there are relatively few studies on its thermal pyrolysis and extinguishing mechanisms. In this study, the thermal decomposition of BTP was studied over a temperature range of 25–800°C and the decomposition products were analyzed by GC and GC–MS. Experimental results showed that the decomposition products were mainly trifluoropropyne (CF3CCH) and/or bromotrifluoromethane (CF3Br). The calculated apparent activation energies for the thermal pyrolysis of BTP by first order reaction approximation were in excellent agreement with the theoretical calculation results by Gaussian 03. Furthermore, by analyzing decomposition products and their chemical inhibition effect, thermal decomposition mechanism of BTP and its chemical extinguishing mechanism at high temperature were then proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.