Abstract
This paper investigates the nonlinear vibration responses of laminated composite conical shells surrounded by elastic foundations under S-S and C-C boundary conditions via an approximate approach. The laminated composite conical shells are modeled based on classical shell theory of Love employing von Karman nonlinear theory. Nonlinear vibration equation of the conical shells is extracted by handling Lagrange method. The linear and nonlinear vibration responses are obtained via an approximate method which combines Lindstedt-Poincare method with modal analysis. The validation of this study is carried out through the comparison of the results of this study with results of published literature. The effects of several parameters including the constants of elastic foundations, boundary conditions, total thickness, length, large edge radius and semi-vertex angle on the values of fundamental linear frequency and curves of amplitude parameter versus nonlinear frequency ratio for laminated composite conical shells with both S-S and C-C boundary conditions are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.