Abstract
Heat recovery steam generators (HRSG) are widely used in industrial processes and combined cycle power plants. The quantity and the state of the produced steam depend on the flue gas temperature and its mass flow rate. Two key factors, which affect those parameters, are the ambient temperature and the load of the gas turbines. The output power of the gas turbines degrades considerably in hot days of summer. The use of the inlet air cooling system to eliminate this problem is rapidly increasing. One of the effective methods is cooling the inlet air to the compressor by Evaporative Coolers. The purpose of this paper is to study the effects of the evaporative inlet air cooling system on the performance of a heat recovery boiler in a combined cycle power plant. The heat and mass balance of a typical HRSG and its components including the superheaters, evaporators and economizers were calculated. To analyze the effects of the changes in ambient temperature and the flue gas flow, a numerical software has been used. The results have shown that using the evaporative cooler will increase the flue gas mass flow rate to the HRSG. Nevertheless, the exhaust gas temperature control system holds this temperature almost constant. Also, the results show that the produced steam temperature remains almost constant. However, the steam mass flow rate increases. Therefore the output power of the steam turbine of the combined cycle will increase. The effect of the increase in the humidity ratio is shown to be insignificant. In fact, it has negligible effect on the produced steam flow rate and the sulfuric acid dew point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.