Abstract

The absorption spectrum of the H(2) molecule was studied at high resolution in the 81-72 nm spectral range. A detailed analysis of the D(') (1)Pi(u)-->X (1)Sigma(g) (+) electronic band system is reported. In the spectrum, more than 70 new lines were assigned. For wavelengths longer than 75 nm, the D(') (1)Pi(u) (+) and (1)Pi(u) (-) components show a clearly different behavior: Tauhe (1)Pi(u) (+) one dissociates into H(1s)+H(n=2) whereas the (1)Pi(u) (-) one leads to molecular fluorescence. For shorter wavelengths, both components are predissociated into H(1s)+H(n=3). The predissociation yields, the dissociation widths, and the absolute values of the transition probabilities were measured over the vibrational progression from v(')=3 to 17, i.e., up to the dissociation limit. The comparison between these absolute transition probabilities and the values calculated in the adiabatic and nonadiabatic approximations demonstrates clearly the importance of nonadiabatic couplings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call