Abstract
In recent years, non-thermal atmospheric pressure plasma has attracted wide interest in industrial and biomedical fields due to its many advantages, such as its high efficiency, simple systems, easy operation, non-toxic residue, and low cost. In this project, non-thermal (cold) plasma generated using a voltage source with a precise frequency (microwave up to 2.4GHz) using argon gas. The electrical properties studied to describe the discharges of argon gas plasma jets at different flow rates (Flow= (1, 2, 3, 4) L/min) and with voltages (150 V). The produced plasma jet column will be analyzed using Optical Emission Spectrometry (OES) technology to determine plasma parameters such as electron temperature (Te), electron density (ne), plasma frequency (fp), Debye length (λD), and Debye (ND) number of the argon plasma jet. We use the Boltzmann plot to determine the electron temperature (Te) in the plasma, and the electron density (ne) is calculated by Stark broadening. The value of the electron temperature decreases from (0.991-1.273) eV and the electron density rises from (2.173-3.664) x1017 cm-3 with higher gas flow rates, also the Plasma plume length rises from (1.1-3.5) cm with higher gas flow rates, while the plasma jet temperature decreased with higher gas flow rates.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.