Abstract
Based on the irradiation damage model of solar cells, the irradiation damage mechanism of space solar cells from the aspect of the carriers’ transport is studied. The basic rules of electrical parameter degradation of GaAs/Ge solar cells under different energy proton and electron irradiation are obtained through the ground-accelerated equivalent simulation test for space-charged particles. The open-circuit voltage degradation curves of the solar cells are fitted nonlinearly by its mathematical model. The change laws of damage coefficient of majority carriers’ removal rate with the incident proton and electron energy are given. The damage coefficient of GaAs/Ge solar cells first increases and then decreases with increasing incident proton energy, and it reaches a maximum at 100keV proton irradiation. In addition, the damage coefficient increases with increasing incident electron energy. The studies show that open-circuit voltage degradation is closely related to the removal effect of the majority carriers under charged particle irradiation. The results have important significance to reveal the irradiation damage mechanism of the space solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.