Abstract

Brittle fracture resistance of RPV 15H2NMFA grade 1 steel is investigated. Sets of small-sized testing samples and a set of standard-sizes samples were used in the study. It was demonstrated that application of sets of small-sized specimens in mechanical tests for determining the brittle fracture resistance of RPV 15H2NMFA grade 1 steel makes possible the following: increasing the volume of tests in each batch by 8 times without significant changes in the design of irradiation facility thus ensuring maintaining the initial irradiation parameters during testing; substantially expanding the database of test results for statistical processing. The need for large-scale modeling of process conditions arising in weld joint zones inaccessible for direct testing, such as: (1) the welding zone between the base metal and the corrosion-resistant coating metal, (2) the welding area between the weld metal and the corrosion-resistant coating metal, and (3) the fusion area between the base metal, the weld metal, and the anticorrosive cladding metal, is demonstrated in the paper. Process modeling of the metal in fusion areas up to 0.5 mm wide (each is 100 μm in size) with an experimental electroslag refined (ESR) ingot of up to 300 mm long with similar microstructure and variable chemical composition allows the following: (1) examining not less than 1000 small-sized impact testing samples with continuous distribution of concentrations of chemical elements in accordance with a certain law; and (2) testing these samples and identifying brittle fracture dangerous zones across fusion areas between the base metal and the anti-corrosive padding metal in the initial state or after subsequent irradiation at a given fluence rate and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.