Abstract
Based on the electronic structure, the physical properties of [Formula: see text] ([Formula: see text], 0.25, 0.5, 0.75, 1) Zintl compounds are studied. The transport properties can be significantly changed by varying the composition [Formula: see text]. The materials under study are more metallic with increasing [Formula: see text] and behaves like a semiconductor when [Formula: see text] decreases. It is found that [Formula: see text] exhibits a larger thermopower magnitude ([Formula: see text] at [Formula: see text] and the Seebeck coefficient decreases as [Formula: see text] increases. The calculated figure of merit factor of [Formula: see text] is found to be low, this is explained by the fact that its structure is very compact and its bandgap is small which lead to high electrical and thermal conductivity due to high carrier concentration ([Formula: see text] at [Formula: see text]). On other hand a narrow-gap (0.46 eV for [Formula: see text]), provides a balance between a high Seebeck coefficient and low electronic thermal conductivity, with a slight increase in the carrier concentration when the temperature increases ([Formula: see text] at 600 K). As a consequence, [Formula: see text] compound is predicted to have good performance for thermoelectric applications. The electrical [Formula: see text] and the thermal [Formula: see text] conductivity for [Formula: see text] compound in both directions (along [Formula: see text] and [Formula: see text]-axes) are calculated. It is obtained that [Formula: see text] is 120% of [Formula: see text] at high-temperature, whereas [Formula: see text] Seebeck coefficient was higher than [Formula: see text] especially at [Formula: see text] ([Formula: see text]. The large value of [Formula: see text] showed that the transport is dominated by zz-axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.