Abstract

The stimulatory effect of spermidine on the translation of poly(A) + mRNA from lactating mouse mammary glands in a wheat germ system was studied. Spermidine stimulated total polypeptide synthesis about 2.5-fold relative to that occurring in the presence of an optimal concentration of Mg 2+ alone. The size and the number of polysomes were about 1.6-times larger in the presence of spermidine than in its absence. A similar magnitude of increase in peptide chain initiation, 1.4-fold, was found when the extent of peptide chain initiation was measured by determining the residual polypeptide synthesis subsequent to the addition of inhibitor(s) of peptide chain initiation to the in vitro translation system with or without spermidine at various times of the incubation. Time-course study of the release of polypeptide from polysomes showed that spermidine stimulated this process to a much greater extent than peptide chain initiation, indicating that the polyamine also increases the rate of peptide chain elongation. The extent of stimulation of peptide chain elongation by spermidine was estimated to be about 1.5-fold when the disappearance of isotope-labeled nascent peptides from polysomes was measured by pulse-chase experiments. These results indicate that spermidine stimulates the cell-free translation of mammary mRNA by increasing the rates of both initiation and elongation of polypeptide synthesis to almost the same extent. The polyamine also reduced the relative amount of incomplete polypeptides, thereby increasing the yield of full-length translational products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call