Abstract

Experimental studies of a plane jet impinging upon a small circular cylinder are conducted by hot-wire measurements. The cylinder is located on the jet centerline within the potential-core region. The jet–cylinder interactions on the instability shear layer frequency, the cylinder wake shedding frequency, and the induced self-sustained oscillation phenomenon are carefully investigated. Test data indicate that the self-sustained flow oscillation is mainly generated by the resonant effect of the flow between the jet exit and the cylinder. Its resonant frequency is found to vary linearly and exhibits jump-stage pattern as a function of the distance between the jet exit and the cylinder. The feedback mechanism and the hydrodynamic instability theorem are proposed to predict correctly the frequency jump position, wave number and the convection speed of the self-sustained oscillating flow for different jet exit velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call