Abstract
For the probability neural network (PNN) algorithm is the non-surveillance's pattern taxonomic approach, the work load major problem, moreover the category number's selection will affect the cluster performance. How to optimize PNN enabled it to play a more effective role in the classified question, this paper proposed one use genetic algorithm optimization probability neural network method: introduction the auto-adapted mechanism genetic algorithm, to the probability neural network's parameter carries on the training, formed the supervised learning probability neural network based on the genetic algorithm, overcome the probability neural network existing algorithm flaw. Then introduces this model in the quality control, guaranteed that the production process is at the control state, achieves the quality control goal. Carries on the test through the simulation experiment to this algorithm, and with the probability neural network, the BP neural network carries on the comparative analysis, proved this method accuracy is high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.