Abstract

A simple design and low cost miniaturized reactor integrated with interchangeable thin film TiO2 nanolayer was successfully fabricated for the photocatalytic degradation of azo dyes. The TiO2 nanofilms were prepared by sol-gel dip-coating method, while the miniaturized reactor was fabricated on poly methyl methacrylate (PMMA) substrates, using a laser cutting machine. The performance of the miniaturized reactor for the photocatalytic degradation process was investigated for the degradation of a commercial dye (Novacron Red C-2BL). About 98% degradation of the commercial dye was achieved after 100 min in a stopped flow system, and 15% in a continuous flow system. The effect of different operating variables such as pH, initial flow rate, light intensity, layers of the nanoparticles, and temperature on the photocatalytic degradation was studied and the optimum operating conditions were determined to be: inlet flow rate of 0.05 ml/s, pH of 7, UV power 82 W and using a multi-layer of TiO2 thin film in the miniaturized reactor. The reaction kinetics was described as pseudo first order kinetics and rationalized using the Langmuir–Hinshelwood model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.