Abstract

A batch of Fe-modified biochars MS (for soybean straw), MR (for rape straw), and MP (for peanut shell) were prepared by impregnating biochars pyrolyzed from three different raw biomass materials, i.e., peanut shell, soybean straw, and rape straw, with FeCl3 solution in different Fe/C impregnation ratios (0, 0.112, 0.224, 0.448, 0.560, 0.672, and 0.896) in this research. Their characteristics (pH, porosities, surface morphologies, crystal structures, and interfacial chemical behaviors) and phosphate adsorption capacities and mechanisms were evaluated. The optimization of their phosphate removal efficiency (Y%) was analyzed using the response surface method. Our results indicated that MR, MP, and MS showed their best phosphate adsorption capacity at Fe/C ratios of 0.672, 0.672, and 0.560, respectively. Rapid phosphate removal was observed within the first few minutes and the equilibrium was attained by 12 h in all treatment. The optimal conditions for phosphorus removal were pH = 7.0, initial phosphate concentration = 132.64 mg L-1, and ambient temperature = 25 °C, where the Y% values were 97.76, 90.23, and 86.23% of MS, MP, and MR, respectively. Among the three biochars, the maximum phosphate removal efficiency determined was 97.80%. The phosphate adsorption process of three modified biochars followed a pseudo-second-order adsorption kinetic model, indicating monolayer adsorption based on electrostatic adsorption or ion exchange. Thus, this study clarified the mechanism of phosphate adsorption by three Fe-modified biochar composites, which present as low-cost soil conditioners for rapid and sustainable phosphate removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.