Abstract

The two-dimensional steady boundary layer flow, of a nanofluid past a stretching sheet with a convective boundary condition in the presence of chemical reaction has been studied. The equation of volume fraction concentration consists of the Brownian motion and the thermophoresis effects. The governing equations are simplified via boundary value approximation and some similarity variables and solved using the Runge-Kutta fourth order method with shooting technique and homotopy perturbation method (HPM) with Pad� approximation (HPM-Pad�). All the salient parameters on the temperature and concentration profiles have been studied and details are given graphically. Thus the results found in this study are being compared with the previously published study, where an excellent agreement is achieved. As presented on tables. It is found that the reduced Nusselt number is a decreasing function of both generative and destructive chemical reaction γ. While the reduced Sherwood number is a decreasing function when chemical reaction parameter, γ0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.