Abstract

Relevance feedback techniques are important to Information retrieval (IR), which can effectively improve the performance of IR. The feedback includes positive and negative relevance one. The most of the previous work using feedback have focused on positive relevance feedback and pseudo relevance feedback in IR. In recent years, some work has been done and investigated the negative relevance feedback in IR. However, this paper highlights the incorporation or integration between the language models based positive and negative relevance feedback in IR, and through positive and negative feedback documents proportion on queries classification, with different parameters adjustment of positive and negative feedback ratio, where both types of feedback are used to modify and expand the user's query model. Our experimental results of using several TREC collections show that this method is significantly outperform the relevance feedback and pseudo relevance feedback in terms of the retrieval accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.