Abstract

We have developed a method for complementing an arbitrary classical dynamical system to a quantum system using the Lorenz and Rössler systems as examples. The Schrödinger equation for the corresponding quantum statistical ensemble is described in terms of the Hamilton–Jacobi formalism. We consider both the original dynamical system in the position space and the conjugate dynamical system corresponding to the momentum space. Such simultaneous consideration of mutually complementary position and momentum frameworks provides a deeper understanding of the nature of chaotic behavior in dynamical systems. We have shown that the new formalism provides a significant simplification of the Lyapunov exponents calculations. From the point of view of quantum optics, the Lorenz and Rössler systems correspond to three modes of a quantized electromagnetic field in a medium with cubic nonlinearity. From the computational point of view, the new formalism provides a basis for the analysis of complex dynamical systems using quantum computers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.