Abstract

Water resources are scarce and difficult to manage in Kazakhstan, Central Asia (CA). Anthropic activities largely eliminated the Aral Sea. Afghanistan’s large-scale canal construction may eliminate life in the main stream of the Amu Darya River, CA. Kazakhstan’s HYRASIA ONE project, with a EUR 50 billion investment to produce green hydrogen, is targeted to withdraw water from the Caspian Sea. Kazakhstan, CA, requires sustainable programs that integrate both decision-makers’ and people’s behavior. For this paper, the authors investigated groundwater resources for sustainable use, including for consumption, and the potential for natural “white” hydrogen production from underground geological “factories”. Kazakhstan is rich in natural resources, such as iron-rich rocks, minerals, and uranium, which are necessary for serpentinization reactions and radiolysis decay in natural hydrogen production from underground water. Investigations of underground geological “factories” require substantial efforts in field data collection. A chemical analysis of 40 groundwater samples from the 97 wells surveyed and investigated in the T. Ryskulov, Zhambyl, Baizak and Zhualy districts of the Zhambyl region in South Kazakhstan in 2021–2022 was carried out. These samples were compared with previously collected water samples from the years 2020–2021. The compositions of groundwater samples were analyzed, revealing various concentrations of different minerals, natural geological rocks, and anthropogenic materials. South Kazakhstan is rich in natural mineral resources. As a result, mining companies extract resources in the Taraz–Zhanatas–Karatau and the Shu–Novotroitsk industrial areas. The most significant levels of minerals found in water samples were found in the territory of the Talas–Assinsky interfluve, where the main industrial mining enterprises are concentrated and the largest groundwater deposits have been explored. Groundwater compositions have direct connections to geological rocks. The geological rocks are confined to sandstones, siltstones, porphyrites, conglomerates, limestones, and metamorphic rocks. In observation wells, a number of components can be found in high concentrations (mg/L): sulfates—602.0 (MPC 500 mg/L); sodium—436.5 (MPC 200 mg/L); chlorine—465.4 (MPC 350 mg/L); lithium—0.18 (MPC 0.03 mg/L); boron—0.74 (MPC 0.5 mg/L); cadmium—0.002 (MPC 0.001 mg/L); strontium—15, 0 (MPC 7.0 mg/L); and TDS—1970 (MPC 1000). The high mineral contents in the water are natural and comprise minerals from geological sources, including iron-rich rocks, to uranium. Proper groundwater classifications for research investigations are required to separate potable groundwater resources, wells, and areas where underground geological “factories” producing natural “white” hydrogen could potentially be located. Our preliminary investigation results are presented with the aim of creating a large-scale targeted program to improve water sustainability in Kazakhstan, CA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.