Abstract

In this paper, we will report on our experimental and simulation results on the impact of EUVL mask absorber structure and of inspection system optics on mask defect detection sensitivity. We employed a commercial simulator EM-Suite (Panoramic Technology, Inc.) which calculated rigorously using FDTD (Finite-difference time-domain) method. By using various optical constants of absorber stacks, we calculated image contrasts and defect image signals as obtained from the mask defect inspection system. We evaluated the image contrast and the capability of detecting defects on the EUVL masks by using a new inspection tool made by NuFlare Technology, Inc. (NFT) and Advanced Mask Inspection Technology, Inc. (AMiT). This tool is based on NPI-5000 which is the leading-edge photomask defect inspection system using 199nm wavelength inspection optics. The programmed defect masks with LR-TaBN and LRTaSi absorbers were used which had various sized opaque and clear extension defects on hp-160nm, hp-225nm, and hp- 325nm line and space patterns. According to the analysis, reflectivity of EUVL mask absorber structures and the inspection optics have large influence on image contrast and defect sensitivity. It is very important to optimize absorber structure and inspection optics for the development of EUVL mask inspection technology, and for the improvement of performance of EUV lithographic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.