Abstract

AbstractBased on the first principles calculation, the effects of vacancies on the structural, electronic and optical properties of ZnO/MoS2 heterostructure are investigated in this work. The results show that vacancies could exist stably in the heterojunctions and cause a significant decrease in bandgap. ZnO/MoS2 with an O vacancy maintains semiconductor property with a bandgap of 0.119 eV, while heterostructure with a Zn vacancy exhibits metallic characteristic. Furthermore, the absorption capability of defective heterojunctions has been extended to infrared light region with obvious redshift. To sum up, vacancy engineering effectively changes the electronic and optical properties of ZnO/MoS2 heterostructure, which provides a feasible approach for adjusting the optoelectronic properties of two‐dimensional heterostructures and broadening their application in functional nanoelectronic and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.