Abstract

Nanofluids are liquids containing suspensions of solid nanoparticles and have attracted considerable attention because they undergo substantial mass transfer and have many potential applications in energy technologies. Most studies on nanofluids have used low-ionic-strength solutions, such as water and ethanol. However, very few studies have used high-ionic-strength solutions because the aggregation and sedimentation of nanoparticles cause a stability problem. In this study, a stable water-based alumina nanofluid was prepared using stirred bead milling and exhibits a high electrical conductivity of 2420μS/cm at 23°C and excellent stability after five severe freezing–melting cycles. We then developed a process for mixing the water-based nanofluid with a high-ionic-strength potassium ferro/ferricyanide electrolyte and sodium dodecyl sulfate by using stirred bead milling and ultrasonication, thus forming a stable electrolyte-based nanofluid. According to the rotating disk electrode study, the electrolyte-based alumina nanofluid exhibits an unusual increase in the limiting current at high angular velocities, resulting from a combination of local percolation behavior and shear-induced diffusion. The electrolyte-based alumina nanofluid was demonstrated in a possible thermogalvanic application, since it is considered to be an alternative electrolyte for thermal energy harvesters because of the increased electrical conductivity and confined value of thermal conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call