Abstract

AbstractThe coupling of HRTEM with atomistic calculations is described for the study of grain boundaries and dislocations in aluminum. HRTEM images of the Σ9 (221) [110] grain boundary are compared with molecular statics calculations using both the Embedded Atom Method (EAM) and two pair potentials. Comparison between observed and simulated images are shown to serve as a stringent test of the theoretical methods. Atomistic calculations can in turn provide threedimensional information about the defect structure. Using the EAM, it is also possible to account for the effects of thin foil geometries on the minimim energy configuration of defects. While these effects are found to be minimal for grain boundary structures, the influence of the thin-foil geometries on the core structure of the 60° dislocation in aluminum is discussed. These comparisons indicate that the EAM function provides a good description of grain boundary structures, but fails to reproduce the observed dislocation core structure due to a low predicted value of the intrinsic stacking fault energy (SFE) on the (111). In contrast, the pair potentials used in this study provide reasonable SFE values, but appear to be less accurate for the prediction of the Σ9 (221) [110] grain boundary structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.