Abstract

The porosity, permeability, and capillary force of porous sintered copper were examined in relation to the effects of copper powder size, pore-forming agent, and sintering conditions. Cu powder with particle sizes of 100 and 200 μm was mixed with pore-forming agents ranging from 15 to 45 weight percent, and the mixture was sintered in a vacuum tube furnace. Copper powder necks were formed at sintering temperatures higher than 900 °C. The porosity, as determined by the Archimedes measurement method, and the permeability performance of the sintered body displayed higher values when the Cu powder size was uniform or small. To investigate the capillary force of the sintered foam, a test was conducted using a raised meniscus test device. As more forming agent was added, the capillary force increased. It was also higher when the Cu powder size was larger and the size of the powders was not uniform. The result was discussed in relation to porosity and pore size distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.