Abstract
A kinematic study of cervical spine. The aim of the study was to confirm the interesting manifestation observed in the dynamic images of the cervical spine movement from full-extension to full-flexion. To further explore the fine motion of total process of cervical spine movement with the new concept of Cobb angular velocity (CAV). Traditionally range of motion (ROM) is used to describe the cervical spine movement from extension to flexion. It is performed with only end position radiographs. However, these radiographs fail to explain how the elaborate movement happens. The dynamic images of the cervical spine movement from full-extension to full-flexion of 12 asymptomatic subjects were collected. After transforming these dynamic images to static lateral radiographs, we overlapped C7 cervical vertebrae of each subject and divided the total process of cervical spine movement into five equal partitions. Finally, CAV values from C2/3 to C6/7 were measured and analyzed. A broken line graph was created based on the data of CAV values. A simple motion process was observed in C2/3 and C3/4 segments. The motion processes of C4/5 and C5/6 segments exhibited a more complex track of "N" and "W" than the other segments. The peak CAV values of C4/5 and C5/6 were significantly greater than the other segments. From C2/3 to C6/7, the peak CAV value appeared in sequence. The intervertebral movements of cervical spine did not take a uniform motion form when the cervical spine moved from full-extension to full-flexion. From C2/3 to C6/7, the peak CAV value appeared in order. The C4/5 and C5/6 segments exhibited more complex kinematic characteristics in sagittal movement. This leads to C4/5 and C5/6 more vulnerable to injury and degeneration. We had a hypothesis that there was a positive correlation between injury/degeneration and complexity of intervertebral movement in the view of CAV. N/A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.