Abstract

Abstract As one kind of unconventional reservoirs, tight oil reservoir has become one of the main forces of oil reserves and production growth. The characteristics of tight oil reservoir are low porosity and ultra-low permeability, thus stimulated reservoir volume (SRV) should be conducted whether applying the mode of vertical wells or horizontal wells production. Tight oil reservoir is mostly developed by natural depletion or water flooding recently, but the problems are existed, including low recovery factor with natural depletion and the difficulty of water injection. To further improve the development effect of tight oil reservoir, CO2 flooding is proposed. Based on chang-8 tight oil reservoir in Ordos Basin, an oil sample of typical block is selected. The PVT experiments are conducted. The compositional numerical model of five-spot pattern is established with a horizontal well in the middle and 4 vertical wells on the edge. Based on the model, several CO2 flooding scenarios of horizontal well with different completion measures are studied. Furthermore, parameters such as the formation pressure, production rate, shut-in gas-oil ratio and total gas injection volume are optimized. The results of this study show that the recovery factor of horizontal well with SRV is higher than those of horizontal well and conventional fractured horizontal well. The minimum miscible pressure (MMP) and the total gas injection volume are two key factors of CO2 flooding effect. CO2 flooding of volume fractured horizontal well in tight oil reservoir can not only improve oil recovery, but also realize CO2 geological sequestration. It plays dual benefits of economy and environment. The study gives new ideas of CO2 flooding with volume fractured horizontal well for the Ordos Basin tight oil reservoir. It can be helpful for rapid and effective development of tight oil reservoirs in Ordos Basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.