Abstract

The torsional vibration of vehicle transmission system is heavily concerned with the increase of vehicle speed. The whole powertrain system has to be matched according to the torsional vibration characteristics, especially in developing a new vehicle. The selection of proper elastic coupling has to be made for the torsional vibration match and some frequencies have to be moved out of engine's range. Thus the torsional vibration model of powertrain needs to be built. In the paper a new torsional vibration model is built, which is programmed in the form of a platform. The whole powertrain system torsional vibration model of a vehicle is built firstly with consideration of gear mesh stiffness and engine's excitation in it. The free torsional vibration mode analysis is made and the resonant torques of each lumped inertia in the transmission system are obtained. Secondly the forced vibration of transmission system with the engine's excitation is made and the dynamic torques of each lumped inertias are obtained. Thirdly the process for the torsional vibration analysis is integrated into the optimization process and the selection of elastic coupling for the transmission system is made according the optimization and match results. Fourthly in order to modify the design parameters in the structural design, the sensitivities of inertia and torsional stiffness with reference to eigenvalues are obtained. At last the evaluations of analysis results are made and some suggestions for structural modification for engineers are presented. According to the above study, the conclusion can be made that the new torsional modelling method, the elastic coupling selection method and integration optimization method in the paper are practical and reliabl and these methods play very important roles in torsional vibration analyzing, match and optimization of vehicle transmission system

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call